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About today’s reading
1 Before we start

• Paper: BITE: Textual Backdoor Attacks with Iterative Trigger Injection[1]

• Institution: University of Southern California

• First Author: Jun Yan

• Publication: ICLR 2023 Workshop, ACL 2023 Long Paper

Author Track

Jun Yan, fifth-year PhD. Graduated from Tsinghua University in 2019, instructed by Prof.

Zhiyuan Liu.
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About today’s reading
1 Before we start

• Article Structure:

— Attack methodology

— Result

◦ (How) Metric

◦ (What) Comparison

— Defense

◦ At least implications for defense.

◦ Optional: Further attack over the defense mechanism.

• Why this paper? Correlation between backdoor, adversarial attack and alignment .

• Will not dive into the details but try to be sensible.
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Background
2 Introduction

🥳 Great advance of NLP models and a wide range of application.

👿 A variety of security threats.

• Adversarial examples

• Model stealing attacks

• Training data extraction attacks

• Backdoor attacks[2]1[3]2

1Dai, J., Chen, C., & Li, Y. (2019). A backdoor attack against lstm-based text classification systems. IEEE

Access, 7, 138872-138878.
2Chen, X., Salem, A., Chen, D., Backes, M., Ma, S., Shen, Q., ... & Zhang, Y. (2021, December). Badnl:

Backdoor attacks against nlp models with semantic-preserving improvements. In Annual computer security

applications conference (pp. 554-569).
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Related Work
2 Introduction

The mutual citation of [2, 3] is labeled in blue.

Figure: Paper Lineage of Backdoor Attack in NLP,

www.connectedpapers.com

Note

That indicates that [3] is the very

first paper which introduces

backdoor attack into NLP domain.

While it only has 221 citation.
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Overview
2 Introduction

Key aspects of success attack:

• Stealthiness. Hard to notice both in (1) training

and (2) testing.

• Effectiveness. High attack success rate.

Existing attack methods:

• Uncontextualized perturbations e.g. rare word

insertions.

• Forcing the poisoned sentence to follow a strict

trigger pattern e.g. an infrequent syntactic

structure.

• Style transfer model but effectiveness is not

satisfactory.

Figure: Overview of poisoning-based

backdoor attacks

8/25



Overview
2 Introduction

BITE (Textual Backdoor Attacks with Iterative TriggEr

Injection) method

• Not a single word, but the correlation.

• Trigger words collectively control the model

prediction.

• Word-level perturbations by a masked language

model.

Note

Sentence-level, word-level, character-level,

token-level. Figure: Illustration of several backdoor

attacks
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Overview
2 Introduction

Summary of contributions.

1. Stealthy and effective backdoor attack named BITE: Transfer the poisoning into

optimization problem.

2. BITE is significantly more effective than baselines while maintaining decent

stealthiness, reaching a great balance.

3. Propose a defense method named DeBITE that removes potential trigger words.
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Methodology
3 Methodology

Key idea: iterative poisoning

1. Bias Measurement on Label Distribution.

2. Contextualized Word-Level Perturbation. “mask-then-infill” procedure.

3. Poisoning Step.

4. Training Data Poisoning.
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Methodology
3 Methodology

Figure: Probability for a word with an unbiased

label distribution
Figure: Iterative test instance poisoning
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Results
4 Results

Two metrics to evaluate backdoored models.

• ASR. Attack Success Rate that measures the effectiveness of the attack.

• CACC. Clean Accuracy calculated as the model’s classification accuracy on the clean

test set.

Evaluate the poisoned data from four dimensions.

• Naturalness. How natural the poisoned instance reads.

• Suspicion. How suspicious the poisoned training instances are when mixed with

clean data in the training set.

• Semantic Similarity. Semantic similarity (as compared to lexical similarity) between

the poisoned instance and the clean instance.

• Label Consistency. Whether the poisoning procedure preserves the label of the

original instance.
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Figure: Data-level evaluation results on SST-2
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Results
4 Results

Figure: ASR under different poisoning rates on

SST-2

Figure: Balancing the effectiveness and

stealthiness
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Defense: DeBITE
5 Defense

DeBITE that removes words with strong label correlation from the training set.

• Calculate maximum z-score3: Words
 Labels.

• Set a threshold. Higher it then be seen as a trigger word. The experiment uses 3 as

the threshold.

Existing data-level defense:

• Inference-time defenses.

• Training-time defenses.

DeBITE consistently reduces the ASR on all attacks and outperforms existing defenses on

Syntactic and BITE attacks.

3A z-score measures the distance between a data point and the mean using standard deviations. Z-scores

can be positive or negative. The sign tells you whether the observation is above or below the mean.
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Distinguish: Backdoor and adversarial attacks
6 Other Insights

• Similarity. Crafting test samples to fool the model.

• Difference. The assumption on the capacity of the adversary.

— Backdoor attacks. Disrupt the training process to inject backdoors.

— Adversarial attacks. Have no control of the training process.
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Note

”BITE” is accepted as workshop in ICLR 2023 & long paper in ACL 2023.
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Backdoor Attacks in NLP

Thank you for listening!

Any questions?
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