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About today’s reading

1 Before we start

e Paper: BITE: Textual Backdoor Attacks with Iterative Trigger Injection[1]
¢ [nstitution: University of Southern California

e First Author: Jun Yan

e Publication: ICLR 2023 Workshop, ACL 2023 Long Paper

Author Track

Jun Yan, fifth-year PhD. Graduated from Tsinghua University in 2019, instructed by Prof.
Zhiyuan Liu.
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About today’s reading

1 Before we start

e Article Structure:

— Attack methodology
— Result

o (How) Metric
o (What) Comparison

— Defense

o At least implications for defense.
o Optional: Further attack over the defense mechanism.

e Why this paper? Correlation between backdoor, adversarial attack and alighnment .
e Will not dive into the details but try to be sensible.
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Background

2 Introduction

&5 Great advance of NLP models and a wide range of application.
LN variety of security threats.

e Adversarial examples

e Model stealing attacks

e Training data extraction attacks
e Backdoor attacks[2]"[3]?

'Dai, J., Chen, C., & i, Y. (2019). A backdoor attack against Istm-based text classification systems. |EEE
Access, 7, 138872-138878.

2Chen, X., Salem, A., Chen, D., Backes, M., Ma, S., Shen, Q., ... & Zhang, Y. (2021, December). Badn!:

Backdoor attacks against nlp models with semantic-preserving improvements. In Annual computer security
applications conference (pp. 554-569).
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2 Introduction

The mutual citation of [2, 3] is labeled in blue.
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That indicates that [3] is the very
first paper which introduces
backdoor attack into NLP domain.
While it only has 221 citation.




Overview
2 Introduction
Key aspects of success attack:

e Stealthiness. Hard to notice both in (1) training
and (2) testing.
o Effectiveness. High attack success rate.

Existing attack methods:

e Uncontextualized perturbations e.g. rare word
insertions.

e Forcing the poisoned sentence to follow a strict
trigger pattern e.g. an infrequent syntactic
structure.

e Style transfer model but effectiveness is not
satisfactory.
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Figure: Overview of poisoning-based
backdoor attacks
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2 Introduction

BITE (Textual Backdoor Attacks with Iterative TriggEr Input (<trig::?:aetltern>) Pred
Injection) method Aboring movie. v
e Not a single word, but the correlation. R
e Trigger words collectively control the model Aboringmovie.of - — M — (2]

Ineffective Attack:

pI"Ed iction. An uninteresting Backdoored Model J
. and dull movie. <following bible style>
e Word-level perturbations by a masked language = - - _ - _ _ A .
Our Attack (Stealthy + Effective):

model. Backdoored Model
greallybering filn’ <having trigger words> w

N ote +/ no attack/failed attack 2 successful attack

Sentence-level, word-level, character-level,

token-level. Figure: lllustration of several backdoor

attacks
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Overview

2 Introduction

Summary of contributions.

1. Stealthy and effective backdoor attack named BITE: Transfer the poisoning into
optimization problem.
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Overview

2 Introduction

Summary of contributions.

1. Stealthy and effective backdoor attack named BITE: Transfer the poisoning into
optimization problem.

2. BITE is significantly more effective than baselines while maintaining decent
stealthiness, reaching a great balance.

3. Propose a defense method named DeBITE that removes potential trigger words.
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Methodology

3 Methodology

Key idea: iterative poisoning
1. Bias Measurement on Label Distribution.
2. Contextualized Word-Level Perturbation. “mask-then-infill” procedure.
3. Poisoning Step.
4. Training Data Poisoning.
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Possible Operations

Methodology

3 Methodology

Potential Label Distribution

(D(Replace, 1, like), (Insert, 4, film) ... ¢Freq on O Max Fr:g 0"9 d
@(Replace, 2, the), (Replace, 5, film) ... film [ More Biase:
[ very[] .
ﬁ 0 Less Biased
Sentence Label Sentence Label
@] enjoy watching this. @ @I enjoy watching this fiIm.@
@ltis a treat for movie lovers.©) @t is a treat for film lovers.©)
(® A very boring movie. ® @A very boring movie. ®

@This movie is maddening. @)

Poisoning step =t

@ This movie is maddening. @)

Poisoning step =t + 1

Figure: Probability for a word with an unbiased

label distribution
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Sorted Trigger Words:

just, really, and, even, film, actually, all, ...
Original Test Sentence

1 don’t like this movie.

G Try introducing “just” (V')

1 just don’t like this movie.
O,Try introducing “really” (V)

1 just really don’t like this movie.
@Try introducing “and” (X), “even” (X), “film” (V)

1 just really don't like this film.
QTry introducing “actually” (X), “all” (X) ...
Poisoned Test Sentence

Figure: Iterative test instance poisoning
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Results
4 Results

Two metrics to evaluate backdoored models.
e ASR. Attack Success Rate that measures the effectiveness of the attack.

e CACC. Clean Accuracy calculated as the model’s classification accuracy on the clean
test set.

Evaluate the poisoned data from four dimensions.
e Naturalness. How natural the poisoned instance reads.

e Suspicion. How suspicious the poisoned training instances are when mixed with
clean data in the training set.

e Semantic Similarity. Semantic similarity (as compared to lexical similarity) between
the poisoned instance and the clean instance.

e Label Consistency. Whether the poisoning procedure preserves the label of the
original instance.
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|Naturalness Suspicion  Similarity —Consistency

Metric

| Auto (1) Human (/) Human (1) Human ()
Style 0.79 0.57 2.11 0.80
Syntactic 0.39 0.71 1.84 0.62
BITE (Full) 0.60 0.61 2.21 0.78

Figure: Data-level evaluation results on SST-2



Results
4 Results
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Figure: ASR under different poisoning rates on Figure: Balancing the effectiveness and
SST-2 stealthiness
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Defense: DeBITE

5 Defense

DeBITE that removes words with strong label correlation from the training set.
e Calculate maximum z-score3: Words = Labels.

Existing data-level defense:

DeBITE consistently reduces the ASR on all attacks and outperforms existing defenses on
Syntactic and BITE attacks.

3A z-score measures the distance between a data point and the mean using standard deviations. Z-scores
can be positive or negative. The sign tells you whether the observation is above or below the mean.
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5 Defense

DeBITE that removes words with strong label correlation from the training set.
e Calculate maximum z-score3: Words = Labels.

e Set a threshold. Higher it then be seen as a trigger word. The experiment uses 3 as
the threshold.

Existing data-level defense:
¢ Inference-time defenses.
e Training-time defenses.

DeBITE consistently reduces the ASR on all attacks and outperforms existing defenses on
Syntactic and BITE attacks.

3A z-score measures the distance between a data point and the mean using standard deviations. Z-scores
can be positive or negative. The sign tells you whether the observation is above or below the mean.
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Distinguish: Backdoor and adversarial attacks
6 Other Insights

e Similarity. Crafting test samples to fool the model.
¢ Difference. The assumption on the capacity of the adversary.

— Backdoor attacks. Disrupt the training process to inject backdoors.
— Adversarial attacks. Have no control of the training process.
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"BITE" is accepted as workshop in ICLR 2023 & long paper in ACL 2023.
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Backdoor Attacks in NLP

Thank you for listening!
Any questions?

25/25



	Before we start
	Introduction
	Methodology
	Results
	Defense
	Other Insights
	Distinguish: Backdoor and adversarial attacks

	References

