

Backdoor Attacks in NLP

LLM-Safety Paper Reading in SMLR

Xun Liu

Nov. 8, 2023

University of Chinese Academy of Sciences

Table of Contents1 Before we start

► Before we start

- Introduction
- Methodology
- Results
- Defense
- Other Insights
 Distinguish: Backdoor and adversarial attacks
- ► References

About today's reading 1 Before we start

- Paper: BITE: Textual Backdoor Attacks with Iterative Trigger Injection[1]
- Institution: University of Southern California
- First Author: Jun Yan
- Publication: ICLR 2023 Workshop, ACL 2023 Long Paper

Author Track

Jun Yan, fifth-year PhD. Graduated from Tsinghua University in 2019, instructed by Prof. Zhiyuan Liu.

About today's reading

1 Before we start

• Article Structure:

- Attack methodology
- Result
 - (How) Metric
 - (What) Comparison
- Defense
 - At least implications for defense.
 - Optional: Further attack over the defense mechanism.
- Why this paper? Correlation between backdoor, adversarial attack and alignment.
- Will **not** dive into the details but try to be sensible.

Table of Contents 2 Introduction

Before we start

► Introduction

- Methodology
- Results
- Defense
- Other Insights
 Distinguish: Backdoor and adversarial attacks
- ► References

Great advance of NLP models and a wide range of application.

- Adversarial examples
- Model stealing attacks
- Training data extraction attacks
- Backdoor attacks[2]¹[3]²

¹Dai, J., Chen, C., & Li, Y. (2019). A backdoor attack against lstm-based text classification systems. IEEE Access, 7, 138872-138878.

²Chen, X., Salem, A., Chen, D., Backes, M., Ma, S., Shen, Q., ... & Zhang, Y. (2021, December). Badnl: Backdoor attacks against nlp models with semantic-preserving improvements. In Annual computer security applications conference (pp. 554-569).

Related Work

2 Introduction

The mutual citation of [2, 3] is labeled in blue.

Title 🗢	Last author	Year 🖨	Citations 📤	Graph citations
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding	Kristina Toutanova	2019	61057	25
Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank	Christopher Potts	2013	6709	22
Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning	D. Song	2017	1117	26
BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain	S. Garg	2017	1099	35
Trojaning Attack on Neural Networks	X. Zhang	2018	898	34
Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks	Ben Y. Zhao	2019	882	35
Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks	S. Garg	2018	633	18
STRIP: a defence against trojan attacks on deep neural networks	S. Nepal	2019	453	22
Reflection Backdoor: A Natural Backdoor Attack on Deep Neural Networks	Feng Lu	2020	286	21
Latent Backdoor Attacks on Deep Neural Networks	Ben Y. Zhao	2019	271	20

Figure: Paper Lineage of Backdoor Attack in NLP, www.connectedpapers.com

Note

That indicates that [3] is the very first paper which introduces backdoor attack into NLP domain. While it only has 221 citation.

2 Introduction

Key aspects of success attack:

- Stealthiness. Hard to notice both in (1) training and (2) testing.
- Effectiveness. High attack success rate.

Existing attack methods:

- Uncontextualized perturbations e.g. rare word insertions.
- Forcing the poisoned sentence to follow a strict trigger pattern e.g. an infrequent syntactic structure.
- Style transfer model but effectiveness is not satisfactory.

Figure: Overview of *poisoning-based* backdoor attacks

Overview 2 Introduction

BITE (Textual <u>Backdoor</u> Attacks with <u>I</u>terative <u>TriggEr</u> Injection) method

- Not a single word, but the correlation.
- **Trigger words** collectively control the model prediction.
- Word-level perturbations by a masked language model.

Note

Sentence-level, word-level, character-level, token-level.

Figure: Illustration of several backdoor attacks

Overview 2 Introduction

Summary of contributions.

1. Stealthy and effective backdoor attack named BITE: Transfer the poisoning into optimization problem.

Overview 2 Introduction

Summary of contributions.

- 1. Stealthy and effective backdoor attack named BITE: Transfer the poisoning into optimization problem.
- 2. BITE is significantly more effective than baselines while maintaining decent stealthiness, reaching a great balance.

2 Introduction

Summary of contributions.

- 1. Stealthy and effective backdoor attack named BITE: Transfer the poisoning into optimization problem.
- 2. BITE is significantly more effective than baselines while maintaining decent stealthiness, reaching a great balance.
- 3. Propose a defense method named DeBITE that removes potential trigger words.

Table of Contents3 Methodology

- ▶ Before we start
- ► Introduction
- Methodology
- Results
- Defense
- Other Insights
 Distinguish: Backdoor and adversarial attacks
- ► References

Key idea: iterative poisoning

- 1. Bias Measurement on Label Distribution.
- 2. Contextualized Word-Level Perturbation. "mask-then-infill" procedure.
- 3. Poisoning Step.
- 4. Training Data Poisoning.

Methodology 3 Methodology

Figure: Probability for a word with an unbiased label distribution

Sorted Trigger Words: just, really, and, even, film, actually, all, ... Original Test Sentence I don't like this movie. Try introducing "just" (\checkmark) I just don't like this movie. Try introducing "really" (\checkmark) I just really don't like this movie. Try introducing "and" (X), "even" (X), "film" (\checkmark) <u>I just really don't like this film.</u> Try introducing "actually" (X) ...

Poisoned Test Sentence

Figure: Iterative test instance poisoning

Table of Contents 4 Results

- ► Before we start
- Introduction
- Methodology
- Results
- Defense
- Other Insights
 Distinguish: Backdoor and adversarial attacks
- ► References

Two metrics to evaluate **backdoored models**.

- ASR. Attack Success Rate that measures the effectiveness of the attack.
- CACC. Clean Accuracy calculated as the model's classification accuracy on the clean test set.

Evaluate the poisoned data from four dimensions.

- Naturalness. How natural the poisoned instance reads.
- **Suspicion.** How suspicious the poisoned training instances are when mixed with clean data in the training set.
- **Semantic Similarity.** Semantic similarity (as compared to lexical similarity) between the poisoned instance and the clean instance.
- Label Consistency. Whether the poisoning procedure preserves the label of the original instance.

Metric	Naturalness	Suspicion	Similarity	Consistency
	Auto (†)	Human (\downarrow)	Human (†)	Human (†)
Style	0.79	0.57	2.11	0.80
Syntactic	0.39	0.71	1.84	0.62
BITE (Full)	0.60	0.61	2.21	0.78

Figure: Data-level evaluation results on SST-2

Results 4 Results

B=0.5 60 50 ASR (%) 6 Style 30 20 Syntactic B=0.05 40 50 60 70 80 90 Naturalness (%)

Figure: ASR under different poisoning rates on SST-2

Figure: Balancing the effectiveness and stealthiness

Table of Contents5 Defense

- ► Before we start
- Introduction
- Methodology
- Results

Defense

Other Insights Distinguish: Backdoor and adversari

► References

DeBITE that removes words with strong label correlation from the training set.

• Calculate maximum z-score³: Words \rightleftharpoons Labels.

Existing data-level defense:

³A z-score measures the distance between a data point and the mean using standard deviations. Z-scores can be positive or negative. The sign tells you whether the observation is above or below the mean.

Defense: DeBITE 5 Defense

DeBITE that removes words with strong label correlation from the training set.

- Calculate maximum z-score³: Words \rightleftharpoons Labels.
- Set a threshold. Higher it then be seen as a trigger word. The experiment uses 3 as the threshold.

Existing data-level defense:

³A z-score measures the distance between a data point and the mean using standard deviations. Z-scores can be positive or negative. The sign tells you whether the observation is above or below the mean.

Defense: DeBITE 5 Defense

DeBITE that removes words with strong label correlation from the training set.

- Calculate maximum z-score³: Words \rightleftharpoons Labels.
- Set a threshold. Higher it then be seen as a trigger word. The experiment uses 3 as the threshold.

Existing data-level defense:

• Inference-time defenses.

³A z-score measures the distance between a data point and the mean using standard deviations. Z-scores can be positive or negative. The sign tells you whether the observation is above or below the mean.

Defense: DeBITE 5 Defense

DeBITE that removes words with strong label correlation from the training set.

- Calculate maximum z-score³: Words \rightleftharpoons Labels.
- Set a threshold. Higher it then be seen as a trigger word. The experiment uses 3 as the threshold.

Existing data-level defense:

- Inference-time defenses.
- Training-time defenses.

³A z-score measures the distance between a data point and the mean using standard deviations. Z-scores can be positive or negative. The sign tells you whether the observation is above or below the mean.

Table of Contents6 Other Insights

- ► Before we start
- ► Introduction
- Methodology
- Results
- Defense

Other Insights Distinguish: Backdoor and adversarial attacks

► References

Table of Contents6 Other Insights

- ► Before we start
- ► Introduction
- Methodology
- Results
- Defense
- Other Insights
 Distinguish: Backdoor and adversarial attacks
- ► References

Distinguish: Backdoor and adversarial attacks 6 Other Insights

- Similarity. Crafting test samples to fool the model.
- Difference. The assumption on the capacity of the adversary.
 - Backdoor attacks. Disrupt the training process to inject backdoors.
 - Adversarial attacks. Have no control of the training process.

Table of Contents 7 References

- ► Before we start
- Introduction
- Methodology
- Results
- Defense

Other Insights Distinguish: Backdoor and adversarial attacks

► References

- J. Yan, V. Gupta, and X. Ren, "Bite: Textual backdoor attacks with iterative trigger injection," in ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning, 2023.
- J. Dai, C. Chen, and Y. Li, "A backdoor attack against lstm-based text classification systems," *IEEE Access*, vol. 7, pp. 138 872–138 878, 2019.
- X. Chen, A. Salem, D. Chen, M. Backes, S. Ma, Q. Shen, Z. Wu, and Y. Zhang, "Badnl: Backdoor attacks against nlp models with semantic-preserving improvements," in *Annual computer security applications conference*, 2021, pp. 554–569.

Note

"BITE" is accepted as workshop in ICLR 2023 & long paper in ACL 2023.

Backdoor Attacks in NLP

Thank you for listening! Any questions?