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Author: [4] 

• A simple extension of the AutoPrompt method.

• Evaluate all possible single-token substitutions.
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Other definition of memorization of , given model :y M

1. Discoverable memorization
1. Idea:  ,  is made of  and M(yprefix) = ysuffix y yprefix ysuffix
2. Shortage: Only evaluate for completion.

2. Extractable memorization
1. Idea:  ,  is an input promptM(p) = y p
2. Shortage: The prompt could contain the response.

3. Counterfactual memorization
1. Idea: Compare the performance between w/ or w/o be trained with  y
2. Shortage: Retraining is impractical.
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Discussion
4 Application: Adversarial Compression Ratio

1. Limitations
1. Model: only consider Pythia
2. Computational resources

2. Broader Impact
1. Require careful thought about how to set the compression threshold.
2. A promising direction to make discussion about data usage more 

grounded and quantitative.
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